Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nature ; 617(7962): 764-768, 2023 May.
Article in English | MEDLINE | ID: covidwho-2325395

ABSTRACT

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).


Subject(s)
COVID-19 , Critical Illness , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Genotype , Phenotype , Genetic Variation/genetics , Whole Genome Sequencing , Transcriptome , Monocytes/metabolism , rab GTP-Binding Proteins/genetics , Genotyping Techniques
2.
International Journal of Bioprinting ; 7(4), 2021.
Article in English | ProQuest Central | ID: covidwho-1848294

ABSTRACT

The development of lateral flow immunoassay (LFIA) using three-dimensional (3D) printing and bioprinting technologies can enhance and accelerate the optimization process of the fabrication. Therefore, the main goal of this study is to investigate methods to speed up the developing process of a LFIA as a tool for community screening. To achieve this goal, an in-house developed robotic arm and microfluidic pumps were used to print the proteins during the development of the test. 3D printing technologies were used to design and print the housing unit for the testing strip. The proposed design was made by taking into consideration the environmental impact of this disposable medical device.

4.
J Epidemiol Glob Health ; 12(1): 85-91, 2022 03.
Article in English | MEDLINE | ID: covidwho-1605573

ABSTRACT

BACKGROUND: Disease severity among patients infected with SARS-CoV-2 varies remarkably. Preliminary studies reported that the ABO blood group system confers differential viral susceptibility and disease severity caused by SARS-CoV-2. Thus, differences in ABO blood group phenotypes may partly explain the observed heterogeneity in COVID-19 severity patterns, and could help identify individuals at increased risk. Herein, we explored the association between ABO blood group phenotypes and COVID-19 susceptibility and severity in a Saudi Arabian cohort. METHODS: In this retrospective cohort study, we performed ABO typing on a total of 373 Saudi patients infected with SARS-CoV-2 and conducted association analysis between ABO blood group phenotype and COVID-19 infection severity. We then performed gender-stratified analysis by dividing the participating patients into two groups by gender, and classified them according to age. RESULTS: The frequencies of blood group phenotypes A, B, AB and O were 27.3, 23.6, 5.4 and 43.7%, respectively. We found that blood group phenotype O was associated with a lower risk of testing positive for COVID-19 infection (OR 0.76 95% CI 0.62-0.95, p = 0.0113), while blood group phenotype B was associated with higher odds of testing positive (OR 1.51 95% CI 1.17-1.93, p = 0.0009). However, blood group phenotype B was associated with increased risk in the mild and moderate group but not the severe COVID-19 infection group. Blood group phenotype O was protective in all severity groups. CONCLUSION: Our findings provide evidence that blood group phenotype B is a risk for COVID-19 disease while blood group phenotype O is protective from COVID-19 infection. However, further studies are necessary to validate these associations in a larger sample size and among individuals of different ethnic groups.


Subject(s)
ABO Blood-Group System , COVID-19 , ABO Blood-Group System/genetics , COVID-19/epidemiology , Humans , Phenotype , Retrospective Studies , SARS-CoV-2 , Saudi Arabia/epidemiology , Severity of Illness Index
5.
Clin Immunol ; 234: 108911, 2022 01.
Article in English | MEDLINE | ID: covidwho-1588089

ABSTRACT

BACKGROUND: Natural killer (NK) cells play an essential role against viruses. NK cells express killer cell immunoglobulin-like receptors (KIRs) which regulate their activity and function. The polymorphisms in KIR haplotypes confer differential viral susceptibility and disease severity caused by infections. We investigated the association between KIR genes and COVID-19 disease severity. METHODS: 424 COVID-19 positive patients were divided according to their disease severity into mild, moderate and severe. KIR genes were genotyped using next generation sequencing (NGS). Association between KIR genes and COVID-19 disease severity was conducted and significant correlations were reported. RESULTS: In the COVID-19 patients, KIR Bx genotype was more common than AA genotype. The Bx genotype was found more frequently in patients with mild disease, while in severe disease the AA genotype was more common than the Bx genotype. The KIR2DS4 gene carried the highest risk for severe COVID-19 infection (OR 8.48, pc= 0.0084) followed by KIR3DL1 (OR 7.61, pc= 0.0192). CONCLUSIONS: Our findings suggest that KIR2DS4 and KIR3DL1 genes carry risk for severe COVID-19 disease.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Genetic/genetics , Receptors, KIR/genetics , Adult , COVID-19/metabolism , Female , Gene Frequency/genetics , Genotype , Humans , Killer Cells, Natural/metabolism , Male , Middle Aged , SARS-CoV-2/pathogenicity
6.
J Infect Public Health ; 15(1): 142-151, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1525853

ABSTRACT

BACKGROUND: The rapid increase in coronavirus disease 2019 (COVID-19) cases during the subsequent waves in Saudi Arabia and other countries prompted the Saudi Critical Care Society (SCCS) to put together a panel of experts to issue evidence-based recommendations for the management of COVID-19 in the intensive care unit (ICU). METHODS: The SCCS COVID-19 panel included 51 experts with expertise in critical care, respirology, infectious disease, epidemiology, emergency medicine, clinical pharmacy, nursing, respiratory therapy, methodology, and health policy. All members completed an electronic conflict of interest disclosure form. The panel addressed 9 questions that are related to the therapy of COVID-19 in the ICU. We identified relevant systematic reviews and clinical trials, then used the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach as well as the evidence-to-decision framework (EtD) to assess the quality of evidence and generate recommendations. RESULTS: The SCCS COVID-19 panel issued 12 recommendations on pharmacotherapeutic interventions (immunomodulators, antiviral agents, and anticoagulants) for severe and critical COVID-19, of which 3 were strong recommendations and 9 were weak recommendations. CONCLUSION: The SCCS COVID-19 panel used the GRADE approach to formulate recommendations on therapy for COVID-19 in the ICU. The EtD framework allows adaptation of these recommendations in different contexts. The SCCS guideline committee will update recommendations as new evidence becomes available.


Subject(s)
COVID-19 , Critical Care , Humans , Intensive Care Units , SARS-CoV-2 , Saudi Arabia
7.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1365266

ABSTRACT

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,864 COVID-19 cases (713 with severe and 1,151 with mild disease) and 15,033 ancestry-matched population controls across 4 independent COVID-19 biobanks. We tested whether rare pLOF variants in these 13 genes were associated with severe COVID-19. We identified only 1 rare pLOF mutation across these genes among 713 cases with severe COVID-19 and observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 cases. We found no evidence of association of rare LOF variants in the 13 candidate genes with severe COVID-19 outcomes.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Loss of Function Mutation , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Interferon Regulatory Factor-7/genetics , Male , Middle Aged , Severity of Illness Index , Toll-Like Receptor 3/genetics , Exome Sequencing , Whole Genome Sequencing , Young Adult
8.
Virus Res ; 288: 198129, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-719033

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 affects all aspects of human life. Detection platforms that are efficient, rapid, accurate, specific, sensitive, and user friendly are urgently needed to manage and control the spread of SARS-CoV-2. RT-qPCR based methods are the gold standard for SARS-CoV-2 detection. However, these methods require trained personnel, sophisticated infrastructure, and a long turnaround time, thereby limiting their usefulness. Reverse transcription-loop-mediated isothermal amplification (RT-LAMP), a one-step nucleic acid amplification method conducted at a single temperature, has been used for colorimetric virus detection. CRISPR-Cas12 and CRISPR-Cas13 systems, which possess collateral activity against ssDNA and RNA, respectively, have also been harnessed for virus detection. Here, we built an efficient, rapid, specific, sensitive, user-friendly SARS-CoV-2 detection module that combines the robust virus amplification of RT-LAMP with the specific detection ability of SARS-CoV-2 by CRISPR-Cas12. Furthermore, we combined the RT-LAMP-CRISPR-Cas12 module with lateral flow cells to enable highly efficient point-of-care SARS-CoV-2 detection. Our iSCAN SARS-CoV-2 detection module, which exhibits the critical features of a robust molecular diagnostic device, should facilitate the effective management and control of COVID-19.


Subject(s)
Betacoronavirus/genetics , CRISPR-Cas Systems , Clinical Laboratory Techniques/methods , Colorimetry/methods , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/instrumentation , Colorimetry/instrumentation , Coronavirus Infections/virology , Endodeoxyribonucleases/chemistry , Humans , Molecular Diagnostic Techniques/instrumentation , Nucleic Acid Amplification Techniques/instrumentation , Pandemics , Pneumonia, Viral/virology , Point-of-Care Systems , Rheology , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL